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ABSTRACT

In this work we discuss the ecological and mathematical significance of system’s dimension in continuous-
time population dynamics models. We show how the system’s dimension reflects the ecological assumptions
and affects both the spectrum of dynamic output and mathematical tractability of the models. We stress that
the model dimension is not always the same as the number of state-variables, and we also present conditions
under which the system’s dimension is altered.
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RESUMEN

En este trabajo discutimos la significación ecológica y matemática de la dimensión del sistema en modelos de
dinámica poblacional en tiempo continuo. Mostramos cómo la dimensión del sistema refleja los supuestos
ecológicos y afecta el espectro de resultados dinámicos así como la tratabilidad matemática de los modelos.
Acentuamos que la dimensión de un modelo no es siempre equivalente al número de variables de estado, y
presentamos condiciones bajo las cuales la dimensión del sistema es alterada.

Palabras clave: ecuaciones diferenciales ordinarias, dinámica poblacional, modelos teóricos, ecología
matemática, estabilidad.

INTRODUCTION

Modeling ecological systems appeals for a
number of decisions the modeler has to take in
order to represent appropriately the
phenomenon of interest.  Many of these
decisions relate to the degree of abstraction to
be allowed in building a model, in the face of
the questions posed and the system’s nature. In
this regard, the favored rule among theoretical
ecologists seems always to be “keep the model
as simple as possible” (e.g., Levins 1968, May
1974).

One fundamental decision for modeling a
natural system is the number of state variables
to include explicitly. Even though we were
interested in the fate of a single variable (e.g.,
the time evolution of a population’s size), the
consideration or not of other interacting
variables is a non-trivial choice. In this work
we will discuss de meaning and the ecological-
mathematical significance of the model

dimensionality in the frame of autonomous
ordinary differential equation systems, and
specifically how transitions from model
systems of dimension-one to dimension-two,
and from dimension-two to dimension-three
and higher reflect implicit assumptions and
affect both the spectrum of dynamic output and
mathematical tractability of the models.

Although there exist several mathematical
frameworks for modeling population dynamics,
perhaps the most fundamental dichotomy stand
for discrete versus continuous representations
of natural processes. The choice between
discrete and continuous models is far from be
obvious and unambiguous, and we guess that
much of the reasons for favoring one or another
framework is a matter of technical
convenience. Often it  is  accepted that
continuous models should be used for modeling
populations which exhibit  continuous
reproduction and overlapping generations, and
discrete models for the opposite. Nevertheless,
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according to the time scale of observation
living population will look as growing either
continuously or discretely. From a
philosophical point of view, some scientists
assume that population dynamics is a
continuous process and discretization can be
made as an approximation over a finite time
interval (Gurney & Nisbet 1998). Others
assume that real world is microscopically
discrete and continuous representations are
idealized pictures of that fact (Ginzburg &
Colyvan 2004). Whether life is fundamentally
continuous or discrete,  there exist  two
mathematical bodies of theory addressing each
of these approaches and population ecology has
developed through using both frameworks.
Here, we benefit from the qualitative theory of
differential equations for addressing our focus
in the frame of continuous-time population
models. Readers interested in knowing the
advances on this field in the discrete
framework could find valuable help in Royama
(1992), Berryman (1999) and Turchin (2003).

Although most of the concepts presented
here apply to any continuous-time biological
model, our focus is on the field of theoretical
population ecology and we will restrict our
approach to deterministic unstructured
continuous-time population models of the form

(1)

where, x ∈ Ω    ℜn and ƒ(x) represents the
growth rate of a population of size x.

DEFINING CONCEPTS

Recent ecological literature make use of
concepts such as dimension and order in a way
that could lead to distraction, since they are
defined within a variety of theoretical
frameworks (see Berryman 1999, Turchin
2003, and Getz 2003) and the provided
definitions not always agree with the usual
dynamical-systems concepts. Therefore, we
provide in this section the necessary definitions
which will be used hereafter.

Berryman (1999) defines dimension in the
frame of discrete autoregressive models, as the
maximum time delay of the system. This

definition is equivalent to that of process order
made by Berryman (1999, based on Royama
1977) and Turchin (2003). On the other hand,
Turchin (2003) defines the related term
dynamical dimension (of an autoregressive
model) as the number of state-variables
included in the system.

In the above context, i.e., autoregressive
models, the concept of dimension and process
order are intimately related to both the proposed
mechanism behind the observed dynamics:
number of necessary variables (lagged densities)
to adequately explain the dynamics, as well as
the shape of the observed dynamics, e.g., first or
second order oscillations.

Within the continuous-time framework, the
definition of dynamical dimension provided by
Turchin (2003) is incomplete, since it does not
consider the actual degrees of freedom of the
system. In other words, the number of state
variables employed in a model can exceed the
minimal number of variables needed to fully
characterize the dynamics. For example,
consider a classical epidemiological model
(Gao et al. 1996):

(2)

where variables represent the number of
individuals who are susceptible (X), exposed
(W), and infectious (Y), in the population of
size N. Since N = X + W + Y, the variables are
not independent and the above model can be
reduced to its equivalent

(3)

in which S and I are the fractions of susceptible
and infectious, respectively. Therefore, the
model of this example is three-dimensional
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even though it could be written in terms of four
state-variables, in a similar fashion as when the
number of parameters in a given model is
reduced without changing the system behavior.

Mathematically speaking, the dimension of
a system of differential equations corresponds
to the dimension of the manifold to which the
trajectories belong. In other words the system’s
dimension equals the minimal number of state-
variables needed to determine the value, at any
time, of all state-variables of the system. In
ecological population models, the number of
state-variables usually coincides with the
dimension of the system since there is not
direct interdependence among the variables.
Nevertheless, in metapopulation models and
many epidemiological ones (see for example
Mena-Lorca and Hethcote 1992, Marquet &
Velasco-Hernández 1997, Mena-Lorca et al.
1999, Hethcote 2000), the dimension can be
lower than the number of state-variables since
the value of any state-variable can be obtained
in terms of the others, as shown above.

On the other hand, we follow the usual
definition of order of a differential equation
system as “m” if it contains an expression of
the form,

being this the highest derivative that appears in
the system. Note that, within some constraints,
a differential equation of order m can be
reduced to a system of m first-order differential
equations. Therefore, the concepts of order and
dimension are intimately related. Although
population dynamics models of order higher
than one are rather unusual, recently Ginzburg
& Colyvan (2004) have divulged a new
framework to modeling single-species
dynamics on the base of a second-order
differential equation, which is analogous to a
pair of first-order ODE. The model of Ginzburg
& Colyvan (2004) has the form

and constitutes a two-dimensional system since
contains two independent variables,  say
abundance n and growth rate

One-dimensional models

A one-dimensional population model represents
the rules for the growth rate of a single
population. For example the system

 (4)

represents the rate of change of the unique
state-variable x (population size) as a function
of the variable itself, and parameters r (intrinsic
growth rate),  b  ( logistic self-limitation
coefficient), y (predators abundance), and c
(predation rate). Using signed digraphs1 - loop
models - (Puccia & Levins 1985), this system
can be displayed as shown in Fig. 1A.

Note that equation (4) contains only one
state-variable and thus the model has
dimension one, even though there is a
parameter (y) representing the abundance of
another population. We can easily rename the
parameter r as r’= r-yc and K=r’/b, and model
(4) changes to the well known form of the
logistic equation.

It should be noted that one-dimensional
models of any complexity contain only one
state-variable,  plus a certain number of
parameters,  provided that the system is
autonomous (i.e. the right hand of the equation
does not include explicitly the time as a
variable).  Main distinctions among one-
dimensional population models are the number
of equilibrium points (i.e., when the growth
rate is zero) that the systems can exhibit, and
the functional relationships between the
variable and parameters.  In the case of
polynomial models (i.e. when f(x) in equation
(1) has a polynomial structure), the number of
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1 Loop graphs show how a variable (represented by a ver-
tex from which an arc starts) affects the rate of change of
the variable to which is connected, provided that the sys-
tem is close to an equilibrium. In other words, loop graphs
are a picture of the Jacobian (community matrix), with
each arc sketched from a variable x1 to another variable x2
representing

with i = 1,2…n, and * is an equilibrium. An arc ending
with an arrowhead indicates a positive effect, whereas an
arc ending with a circle indicates a negative effect. Thus,
Fig. 1A shows that the population size affects negatively
its own rate of change near the equilibrium, for any positi-
ve value of the variable.
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equilibria is bounded by the degree of the
polynomial. Equation (4) is a polynomial of
degree-two, with the coefficient of the
quadratic term being negative (self-limitation).

A one-dimensional model of degree-three is

(5)

which through modifying eq. (4) combines the
negative feedback due to self-limitation and a
positive feedback due to cooperation among
population members (e.g., the Allee effect, see
Dennis 1989, Stephens & Sutherland 1999,
Boukal & Berec 2002, Berryman 2003).

It should be noted that non-polynomial
models can be build by, for example,
incorporating a nonlinear (such as those of the
Holling type) predation function. Let us
consider such modification through changing
equation (4) to:

(6)

which make use of a Holling type-III predation
function. The above equation can be studied
through equation (7), which is a polynomial
model of degree-four,  since both are
qualitatively equivalent.

(7)

On the other hand, models containing other
kind of functions such as exponentials or power
functions can be fairly approximated to a
polynomial through a Taylor expansion near
the equilibrium. Therefore, the local qualitative
properties of non-polynomial models can be
studied through their corresponding Taylor
polynomial.

Analysis of one-dimensional models

In the Fig. 2 we plot the population growth rate
as a function of x according to the exponential,
logistic, and Allee-effect models. These kind of
plots provide valuable information about the
fate of a trajectory, i.e. the time evolution of
the state-variable. Their abbreviated forms,
where the fluxes around equilibria are drawn
along the x-axis, are known as one-dimensional
phase-portraits (Edelstein-Keshet 1988).

We can perform a direct stability analysis
by just looking at the derivative of the growth
rate

evaluated at equilibria.  If  negative, the
equilibrium is locally stable; otherwise it is
unstable (see Edelstein-Keshet 1988, Yodzis
1989, Chicone 1999, Kot 2001, Brauer &
Castillo-Chávez 2001).

Thus, one-dimensional systems can exhibit
a limited range of dynamic behavior. First, it
should be noted that the number of equilibrium
points, if they exist, can be one or more.
Second, an equilibrium point can be attractor or
repellor but the transient trajectories are always
monotonic. In other words, the fate of a
population governed by a one-dimensional
model is either increase or decrease, gently

Fig. 1: Loop graphs of population systems. The
circle represents the state variable; connectors
ending in a small circle and an arrowhead indi-
cate respectively a negative and a positive
effect of one variable on the rate of change of
the other. (A) Self-damped single population;
(B) predator-prey interaction with prey self-li-
mitation; (C) Lotka-Volterra competitive inte-
raction; (D) trophic cascade; (E) exploitative
competition; (F) shared predator; (G) intraguild
predation.
Gráficos de loop de sistemas poblacionales. El círculo re-
presenta la variable de estado; los conectores que terminan
en círculo pequeño y en punta de flecha indican respecti-
vamente un efecto negativo y un efecto positivo de una
variable sobre la tasa de cambio de la otra. (A) Población
simple autolimitada; (B) interacción depredador-presa con
autolimitación en las presas; (C) interacción competitiva
de Lotka-Volterra; (D) cascada trófica; (E) competición
explotativa; (F) depredador compartido; (G) depredación
intragremio.
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approaching the attracting equilibrium in the
basin of attraction. Note that an attractor point
could indeed be the zero, in which case the
population approaches to extinction.

Two-dimensional models

Ecology deals with interactions, and for model
many ecological processes it is necessary to
include explicitly the dynamic interaction
between two or more populations.
Consequently, binary interactions such as
predation, parasitism, competition, mutualism
and others constitute foundational concepts in
population ecology and hence they occupy an
important fraction of most ecology textbooks.

Starting from the single species model (4),
we can jump to a two-dimensional system
through explicitly modeling the predator
population. One alternative is

(8a)

(8b)

where the growth rate of predators is governed
by an input (sometimes interpreted as birth
rate) and an output (death rate). In this case, the
input is a fraction p of food consumed and the
output is an exponential decay. A more general
interpretation is that the per capita growth rate
of predators is a linear function of food
consumed, with slope p and intercept -m (see
Ginzburg 1998, Ramos-Jiliberto 2005). Of

course, if the extraction rate of prey is modeled
in other ways, the predator equation will
change accordingly. Moreover, alternatives of
converting prey consumed into predator own
biomass other than a straight line also exist (see
for example Getz 1991, 1993, Ramos-Jiliberto
2005). A graphical representation of a predator-
prey system such as (8) is shown in Fig 1B.

The point to address here is that the explicit
consideration of two populations growing in
mutual dependence originates a system whose
range of dynamic behavior is qualitatively
different and richer than the single species
case. Particularly, the occurrence of oscillatory
trajectories of populations can only be
explained (in the frame of first-order
differential equations models without time-
lags) through multispecies interaction (see
Turchin 2003). On the other hand, complex
communities could in principle be decomposed
as a net of binary trophic interactions, and
therefore the understanding of simple two-
species interactions can provide a basis for
understanding real ecological systems. From
the above arguments it is clear that two-
dimensional models are needed to represent a
large set of ecological scenarios, and predator-
prey systems are particularly important since
they form the basis of food webs.

Binary interspecific interactions, and
predator-prey models in particular are among
the best studied ecological systems from a
theoretical standpoint. Besides the mentioned
conceptual importance in ecology, two-
dimensional systems composed by first-order
ordinary differential  equations receive

Fig. 2: One-dimensional phase planes of population models of exponential growth (A), logistic
growth (B), and logistic + Allee-effect growth (C).
Planos de fase unidimensionales de modelos poblacionales para crecimiento exponencial (A), crecimiento logístico (B) y
crecimiento logístico + efecto Allee (C).

ycxbxrx
dt
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comparatively large attention due to the fact
that mathematical theory is well developed for
this kind of dynamical systems. Therefore,
there is a good chance to characterize in
deepness the dynamic behavior of two-
dimensional models.

Analysis of two-dimensional model

In contrast with the one-dimensional case, two-
dimensional phase-portraits contain both state-
variables (Fig. 3). Thus, to locate the equilibria
the common procedure is to find the
intersections on the plane of the nullclines.
This can be accomplished through analytical or
numerical methods. We recommend the use of
the free-distributing software XPPAUT
(Ermentrout 2002) for numerical phase-plane
and bifurcation analysis.

Analytically, the stability of the critical
points is again obtained by looking at the
derivatives of the system’s growth rate as a
function of the variables at equilibria. Here we
are concerned with two-dimensional models
whose derivative corresponds to the Jacobian,
or community matrix J(X) .  Ordinary
differential equations theory states that the
qualitative behavior near the equilibrium point
X* is determined by the sign of the real part of
the eigenvalues of J(X*). Since the signs of the
real part  of eigenvalues depend on the

parameter values contained in the elements of
the Jacobian, a change in parameter values
could shift those signs from negative to
positive or vice versa. The exact parameter
values where the sign of the real part of the
eigenvalues changes is known as bifurcation set
(point, curve or surface), and on this set the real
part of one or both eigenvalues is equal to zero.
The study of a system at a bifurcation set turns
to be highly sophisticated in many cases and can
give valuable information about the dynamics of
the system (Hainzl 1988). Nevertheless
bifurcation points themselves are often
considered of lesser importance for ecological
purposes since we are mainly interested in the
qualitative behavior of the system at different
regions of the parameter space, which are
delimited by the bifurcation set.

The most important tool available from
dynamical system theory for fully analyzing
two-dimensional systems is the Poincaré-
Bendixson theorem. It states that given that
every solution of the system of differential
equations is bounded (satisfied in most
ecological models due to population
regulation), then any non steady-state trajectory
within a closed set presents three possible
outcomes: a) the trajectory will approach a
steady-state, b) the trajectory is a periodic orbit
or c) the trajectory approaches a closed
periodic orbit or a cycle graph (see Edelstein-
Keshet 1988, Chicone 1999). An important
consequence of this theorem is that inside a
periodic orbit there must be an equilibrium,
which can be stable or unstable. If the orbit
surrounding the equilibrium point is a stable
limit cycle and the inner point is also stable,
there are at least two domain of attraction
separated by at least one unstable periodic
orbit. Thus, based on the powerful Poincaré-
Bendixson theory, it is possible to fully analyze
the dynamical outputs of two-dimensional
systems. However, this task can be quite hard
when facing two-dimensional biological
models with indeed a moderate degree of
realism.

Three-dimensional and higher-dimensional
models

Often in nature, what is modeled as a binary
interaction is a reduced abstraction of a more
complex process. For example, exploitative

Fig. 3: Two-dimensional phase-plane of a pre-
dator-prey model. The zero-growth isolines are
shown, together with a trajectory approaching a
limit-cycle.
Plano de fase bidimensional de un modelo depredador-pre-
sa. Se muestran las isolíneas de crecimiento cero y una
trayectoria que aproxima a un ciclo límite.
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competition for food is often represented as a
mutually negative interaction between two
competitors in circumstances that the system in
mind includes a shared resource. Therefore we
could better represent an exploitative
competition process through extending model
(8) to

(9a)

(9b)

(9c)

(Fig. 1E) where z is the population size of a
second predator. As before, more complex
conversion and extraction functions will render
more sophisticated equations.

Holt (1977) showed that mutually negative
effects between two populations could be the
result of a process entirely different from
competition, where the two apparent
competitors are prey which share a common
predator (Fig. 1F). These kinds of indirect
effects are emergent properties of system of
three and higher dimension. Several
ecologically important processes can only be
represented in models of three or more
dimensions, such as trophic cascades (Fig. 1D,
see also Kerfoot 1987),  and intraguild
predation (Polis et al. 1989, Polis & Holt 1992,
Arim & Marquet 2004, see Fig. 1G). In
complex food webs, indirect effects could
dominate the system dynamics through
reducing, canceling out, or reinforcing the
direct effects. Indirect effects can arise either
through a chain of direct interactions, or
through a modification of a direct binary
interaction caused by a third population
(Wooton 1994).  The final result  at  the
community level depends on the whole
feedback structure of the system.

We could generalize somewhat the models
already presented in order to include any other
functional response (extraction function) and
conversion function from food consumed to
consumer growth, and to include any possible
food web structure.

(10)

for any h ≠ i ≠ j, all of them form 1 to n. Here
φih represents the extraction rate of prey h by
one unit of predator i. The function gih(φih) is
the conversion rate of food extracted by the
population i from population h to own biomass.
Coefficient λi denotes a linear self limitation
term.

Analysis of three-dimensional and higher-
dimensional models

Although the ecological relevance of indirect
effects and multidimensional systems is well
established in the literature, the mathematical
analysis of three- and higher-dimensional
models is challenging. A fortunate solution of a
three-dimensional system is shown in Fig. 4,
where a trajectory in a three-dimensional plane
approaches a three-dimensional limit cycle.

The main problem when we face a three or
higher-dimensional system analysis is that the
Poincaré-Bendixson theorem does not applies.
This imposes a big difference with the analysis
of two-dimensional system, namely, that it is
not enough to know the stability of every
equilibrium point in order to determine the
dynamics of the whole system, since the long-
term behavior of a trajectory in a compact set
do not necessarily converges to any structure.
Furthermore, if non periodic orbits exhibit
high-sensitivity to initial conditions, a chaotic
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Fig. 4: A solution of a three-dimensional mo-
del of the kind shown in Fig. 1F.
Una solución de un modelo tridimensional del tipo mostra-
do en Fig. 1F.
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curve may appear (see Strogatz 1994). Chaos,
together with stable equilibria and stable limit
oscillations constitute the best recognized long-
term dynamical outputs of population models,
and their occurrence in nature is a growing
field of contemporary research (Fussmann &
Heber 2002, Jansen & Kokkoris 2003).

The range of dynamic outputs arising from
three-dimensional models, as outlined above, is
qualitatively different from that of one- and
two-dimensional systems and the ecological
meaning of this distinction is relevant. Note
that in two-dimensional systems, for instance a
predator-prey model, the qualitative asymptotic
behavior of one variable is equivalent to that of
its partner. This means that if one population
approaches a steady-state,  the second
population also does so; if one population
approaches a limit cycle, the second population
also oscillates.  Conversely, in three-
dimensional models one of the species can
reach a steady-state while the other two are
oscillating. An intuitive explanation of this is to
consider that a variable at steady-state behaves
as a parameter (i.e., the value does not change
through time). Therefore, the non-steady-state
variables of a (n)-dimensional system will
behave as those belonging to a (n-k)-
dimensional system once k of the variables
reach a steady-state (for a mathematical proof
see Thieme 1992, and see Mena-Lorca &
Hethcote 1992 for an example).  As a
consequence, a two-dimensional system with
one variable closely approaching a steady-state
behaves like one-dimensional and cannot
exhibit oscillations, but a three-dimensional
system with one variable approaching a steady-
state will behaves like a two-dimensional one
which still allows oscillations (but not chaos).
In short, a three-dimensional system can
exhibit any combination of stable points with
cycles, and cycles with chaos, excepting two
variables at steady-state and one cycling. Under
the same reasoning, it is easy to elucidate the
possible behavior of each variable composing
four- or higher-dimensional systems.

The study of local stability properties of a
three- and higher-dimensional systems is not an
easy task. In order to compute the eigenvalues
of an n-dimensional Jacobian, we could have to
factor out an n-degree polynomial, which in the
case of n > 4 there is no explicit formula to find
polynomial roots. In this case, it is useful to use

the Routh-Hurwitz criteria, which provide
conditions for negativity of the polynomial
roots. Therefore, this tool sets out the criteria
for determining local stabili ty of the
equilibrium points without need of calculating
the roots of the characteristic polynomial, but
instead through manipulating its coefficients.
The stability algorithms for verifying stability
of two-, three-, four- and five-dimensional
models based on the Routh-Hurwitz criteria are
summarized in May(1974).

Levins (1974,  1975) developed an
approach to apply the Routh-Hurwitz criteria
to n -dimensional  qual i ta t ively-specif ied
systems, known as loop analysis (for recent
advances on this theory see Puccia & Levins
1985, Dambacher et al. 2003a, 2003b). Loop
analysis makes use of signed digraphs to
compute the conditions for stability and the
response of the state-variables to any set of
press perturbations exerted on the system’s
variables. Additionally, loop analysis explains
pure mathematical conditions for stability and
response prediction in terms of feedback
structure of the model system. Given that
qualitatively-specified models are easier to
build and more amenable to reach agreement
with real data, this approach allows studying
real multidimensional systems sacrifying
precision for the sake of generality and
realism (Hulot et al. 2000).

Few fully-specified ecological models of
dimension three or higher have been
completely studied. The research is often
reduced to determine local stabili ty,
persistence, invariance and so on; and as
mentioned above, from this kind of partial
information it is not possible to get a complete
picture of the dynamics. In general, the only
analytic tool available to study global stability
of equilibria is to find a Lyapunov function
(Chicone 1999). Briefly, a Lyapunov function
is a one that renders level curves surrounding
the equilibrium point, and there curves are
crossed over by any trajectory toward the
equilibrium. Given that such a function exists,
one can assure that the trajectories approach to
the equilibrium point.  In contrast with
mechanical and electrical systems where there
are natural functions to try (in this case
energy), for ecological models there is no
standard procedure to build Lyapunov
functions.
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Monotone systems

Recent advances in dynamic system theory show
that some special kind of models, the so called
monotone dynamical systems, of dimension n will
behave as possessing dimension n-1 (Smith 1988,
1995, Hirsch & Smith 2003). Although this
theory has important theoretical implications, it is
still underappreciated by ecologists.

In ecological terms, competitive and
cooperative systems are monotone. A system of
populations interacting only via negative effects
is said to be competitive, and the reverse holds
for a cooperative system. To be more precise, a
system which has a Jacobian (community)
matrix whose non-diagonal elements are non-
positive is a competitive system. Conversely, a
system which has a Jacobian (community)
matrix whose non-diagonal elements are non-
negative is cooperative. Therefore, competitive
or cooperative two-dimensional systems cannot
exhibit sustained oscillations, and competitive or
cooperative three-dimensional systems can show
cyclic but not chaotic trajectories. On the other
hand, this property allow us to use the analytic
tools which are functional to systems of the
immediately lower dimension. Thus, Poincaré-
Bendixson theory can be employed to analyze
competitive or cooperative three-dimensional
systems.

Although we just mentioned a sufficient (but
not necessary) condition to find competitive and
cooperative systems based on the Jacobian
matrix, there exist a wider criterion to define
monotonicity. A system X’=f(X) is said to be
competitive (monotone) in the set D if there
exists a diagonal matrix H=diag(ε1,ε2...εn)
where each εi is 1 or –1, such that the matrix
product HJ(X)H has only non positive values
outside the diagonal, for any X  (see Smith
1995). In the above statement, J(X) is the
Jacobian matrix of f and D is a convex set (i.e. a
set with no holes). Ecological systems that
satisfy such conditions are, for example, the
Lotka-Volterra two-species competition model.

(11a)

(11b)

which is represented in Fig. 1C.

More generally, a system of n competitors
of the kind

(12)

possesses a Jacobian J(x1,...,xn) whose non-
diagonal elements satisfy the condition

for every i≠.j, therefore taking H = diag(1,…,1)
the product HJ(X)H has only non-positive
values outside the diagonal. Thus, system (12)
behaves as a system of dimension n-1.

Provided that the Jacobian is sign-stable,
any system of n interacting species will be a
monotone system if every pair of interacting
species have a symmetrical effect between
them, irrespective of the existence of one-sided
effects (i.e., amensalism or comensalism).
More simply, a community of biological
populations which exhibits any kind of
interaction other than predation or parasitism
(+/-) will be a competitive system in the phase
space, and will behave as a lower dimensional
system. This property can be checked
graphically in a loop model if it does not
contain any two vertices linked between them
by a pair of arcs of opposite sign.

Further considerations about time

There are two ways how the time can be
included into differential equation models,
altering in this way the dimension of the system.
The first is through incorporating a function
explicitly dependent on time. For example,
consider a logistic growing population being
environmentally forced in a way that one of its
parameters (e.g., carrying capacity) is
considered to be seasonally changing,

(13)

then the above model is non-autonomous and
capable of exhibiting a more complex dynamics
than its autonomous counterpart. This model is
in fact two-dimensional, even though it has
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only one explicit state-variable. The periodic
equation shown above is fully equivalent to the
following system of autonomous ODE:

(14)

where the two-dimensionality is now entirely
apparent.

In general, since any non-autonomous
system can be reduced to an autonomous
equivalent, the real dimension of the original
time-dependent model is that of its associated
autonomous. Roughly speaking, by switching
an autonomous system into a time-dependent
version (e.g., by considering seasonal or inter
annual external forcing), one more dimension is
being added.

The second way of incorporating the time
into differential equation models is through
including time-delays, e.g. for modeling the
current population growth rate in dependence
on the value of the state variable at some time
in the past. One particular case of delay-
differential equation is.

(15)

This apparently innocent modification to the
classical logistic converts the model into
infinite-dimensional.  For a comparative
visualization of this, consider a discrete
autoregressive model of the form.

(16)

Here, the state of xt depends on the values
of the variables at d previous instants and thus
the dimension of this system is d (Berryman
1999, Turchin 2003). In the case of eq. (15) the
state of the variable x(t) depends on the values
of x at the infinite (t-s) previous instants, for all
s in the (continuous) range 0 to τ. Therefore the
dimension is infinite whenever time delays are
included in a differential equation system, and
the expected dynamics is that which belong to
higher-dimensional models discussed before.
This implies that, for example, a two-variable
model can exhibit oscillatory or indeed chaotic

behavior in one or both variables, a dynamics
only expected in higher-dimensional systems.
Conversely, the existence of biological delays
within a population can explain the occurrence
of complex dynamics without invoking
interactions between species. Therefore, simple
food web architectures could develop very
complex behavior since they are associated to
complex feedback structures when time delays
are significant.

CONCLUDING REMARKS

Populations in nature as well  as under
controlled experiments exhibit a range of
endogenous dynamic behavior, from steady-
state to periodic and aperiodic oscillations (see
empirical examples in Costantino et al. 1997,
Berryman 1999, Fussman et al. 2000, Mueller
& Joshi 2000, Turchin 2003). When using
mathematical models for explaining ecological
processes associated to the dynamics, the
dimension of the model system largely
influences its dynamical outcome. Although
populations in the wild are part of high-
dimensional ecological networks, it is plausible
to assume that through studying a small
abstract subset of interacting -or indeed an
isolated- species we can gain useful insights
about the causes and consequences of their
dynamics. Based on a large dataset, Kendall et
al. (1998) found that 30 % of the observed time
series of animal populations exhibits cyclic
behavior, and later on Murdoch et al. (2002)
showed that cyclic populations differ in their
oscillation period so that many generalist
consumers can be adequately described by
single-species models. Nevertheless, Yodzis
(2000) stressed the inadequacy of lower-
dimensional models for represent real
networks. At the present state of the ecological
theory, it seems that the combined use of one,
two, three, and multidimensional models of
population dynamics will continue to give us
guidelines for basic and applied research.

We stress that the correct consideration of
the system dimension is of vital importance
when working with theoretical models in
ecology. From a theoretical standpoint, given a
large initial model, the choice about which
variables neglect in order to get a workable
model should be based on a former decision
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about the dimension to obtain. Therefore it is
necessary to specify the formal dependence of
the neglected versus non-neglected variables.
In this way the new model is totally defined
since the neglected variables are determined by
the others. For example, Schaffer (1981)
provides a proper method to reduce the number
of variables of a model system and obtain what
he called an abstracted growth equation. As a
simple illustration of this point, consider a
system composed by two competing species
which share one common predator. If one of
the prey is deleted as a variable the original
three-dimensional system is reduced to a two-
dimensional one. Instead, if the predator is the
neglected variable the system is reduced to a
one behaving as one-dimensional since the
resulting community is monotone. On the other
hand consider a system of one predator and one
prey composed by two stages with fixed ratio
(e.g. ,  males and females in constant
proportion). This three-variables system is two-
dimensional because the two stages are not
independent variables,  and deleting the
predator reduces the dimension by one, but
deleting one prey stage implies no change in
the dimension.

Assuming that statistical tools are available
to accurately capture the dominant dimension
of a natural system, a minimal model of it
should exhibit the observed dimensionality.
Once specified the suitable dimension, a set of
specific mechanistic hypotheses (alternative
models) can be constructed and contrasted
according to the concepts discussed here. For
example, if the real system is shown to be two-
dimensional, some model candidates are a
second-order single-species model, a simple
predator-prey system, and a three-species
monotone model, all of them possessing two-
dimensional behavior. A rigorous analysis of
the alternative models can provide further
hypotheses to be tested by means of
manipulation or subsequent observation in
order to reject some alternatives. Once the best
model is selected, the mechanism behind the
model structure will  offer a plausible
explanation to the observed natural patterns.

Finally we want to underline that the
identification of the real dimension of a
dynamical model system in not always obvious,
since it is affected by multiple factors others
than the number of equations written down.

The dimension is determined by the number of
independent state-variables, and it is therefore
dependent on the absolute number of variables,
their degree of interdependency, their
autonomy respect to time, the order of the
system, and presence of time-delays. Moreover,
structural features such as monotonicity alter
the correspondence between dimension and
qualitative behavior. On the other hand,
depending on the kind of mathematical answer
we would want to obtain, the choice of the
system’s dimension limits our ability to get
reliable results. However, analogous drawbacks
exist when facing an ecological question by
means of empirical tools, since the interactions
among sources of variation in experimental
settings are arbitrarily bounded by the
particular experimental design. As a corollary,
we would say that as long as we do not have a
solid theory about the evolution of ecological
systems (and perhaps we will never have it),
serious ecologists should be aware about the
limitations of the approaches they use and try
to creatively combine the insights arising from
diverse lines of attack (including modeling) in
order to gain understanding on the questions
which motivate their work.
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